Skip to Content
ConceptsVisualizationOverview

Visualization

A collection of data visualization recipes using Matplotlib, Seaborn, and Plotly. Learn various visualization techniques from basic charts to interactive dashboards.

Library Comparison

LibraryFeaturesWhen to Use
MatplotlibBasic, fine-grained customizationStatic charts for papers, reports
SeabornSpecialized for statistical visualization, beautiful default stylesEDA, distribution/correlation analysis
PlotlyInteractive, web-basedDashboards, presentations
AltairDeclarative grammar, conciseQuick exploratory analysis

Curriculum

1. Basic Charts

Beginner

Learn basic charts such as bar graphs, line charts, and scatter plots.

  • Bar Chart
  • Line Chart
  • Scatter Plot
  • Pie Chart
  • Histogram

Get Started with Basic Charts β†’


2. Heatmaps

Intermediate

Learn how to visualize correlations and time-based patterns using heatmaps.

  • Correlation Heatmap
  • Time x Day of Week Heatmap (Activity Patterns)
  • Pivot Table-based Heatmap
  • Clustermap

Get Started with Heatmaps β†’


3. Treemaps

Intermediate

Learn treemaps that represent hierarchical data using area.

  • Sales Share by Category
  • Hierarchical Structure Representation (Department > Team > Product)
  • Expressing Performance with Color (Growth Rate, etc.)
  • Using Plotly and Squarify

Get Started with Treemaps β†’


4. Sankey Diagrams

IntermediateAdvanced

Learn Sankey diagrams that visualize flow.

  • Marketing Funnel Visualization
  • Channel Conversion Flow
  • Customer Journey Analysis
  • Node and Link Configuration

Get Started with Sankey Diagrams β†’


5. Geospatial Visualization

IntermediateAdvanced

Learn map-based data visualization methods.

  • Interactive Maps with Folium
  • Choropleth Maps
  • Markers and Popups
  • Location-based Clustering

Get Started with Geospatial Visualization β†’


6. Animated Charts

Advanced

Learn how to express changes over time through animation.

  • Matplotlib Animation
  • Plotly Express Animation
  • Ranking Changes Over Time (Racing Bar Chart)
  • Exporting to GIF/MP4

Get Started with Animated Charts β†’


7. Interactive Dashboards

Advanced

Learn to build interactive dashboards using Plotly and Streamlit.

  • Plotly Dash Basics
  • Streamlit Dashboard
  • Filters and Callbacks
  • Real-time Data Integration

Get Started with Interactive Dashboards β†’

Chart Selection Guide

ℹ️
Which chart should you choose?

For Comparison:

  • Category comparison β†’ Bar Chart
  • Changes over time β†’ Line Chart
  • Ranking comparison β†’ Horizontal Bar Chart

For Distribution:

  • Single variable distribution β†’ Histogram, Box Plot
  • Relationship between two variables β†’ Scatter Plot
  • Correlation matrix β†’ Heatmap

For Composition:

  • Proportion of total β†’ Pie Chart, Treemap
  • Sum of parts β†’ Stacked Bar Chart
  • Flow/Conversion β†’ Sankey Diagram

For Geography:

  • Regional values β†’ Choropleth
  • Location markers β†’ Marker Map
  • Density β†’ Heatmap Map

Basic Setup Code

import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go # Matplotlib Korean font settings plt.rcParams['font.family'] = 'AppleGothic' # macOS # plt.rcParams['font.family'] = 'Malgun Gothic' # Windows # plt.rcParams['font.family'] = 'NanumGothic' # Linux plt.rcParams['axes.unicode_minus'] = False # Default style settings plt.style.use('seaborn-v0_8-whitegrid') sns.set_palette('husl') plt.rcParams['figure.figsize'] = (12, 6) # Plotly default template import plotly.io as pio pio.templates.default = 'plotly_white'
PurposePaletteCode
Categoricaltab10sns.color_palette('tab10')
SequentialBluessns.color_palette('Blues')
DivergingRdYlGnsns.color_palette('RdYlGn')
EmphasisSet2sns.color_palette('Set2')
Last updated on

πŸ€–AI λͺ¨μ˜λ©΄μ ‘μ‹€μ „μ²˜λŸΌ μ—°μŠ΅ν•˜κΈ°