Skip to Content
InterviewCase Studies

Case Study Interview

1 Sample Question10 Total Questions

Practice solving business cases given in real interviews. The thought process and communication matter more than the correct answer.


๐ŸŽฏ Case Interview Approach

CRISP Framework

  1. Clarify: Clarify the problem (ask questions!)
  2. Reframe: Redefine into an analyzable form
  3. Identify: Identify required data and methodology
  4. Solve: Perform analysis (SQL/Python)
  5. Present: Communicate results in business language

๐Ÿ“Š Sample: Revenue Decline Analysis (1/10)

Intermediate
Time Limit: 30 minutes

Situation

โ€œRevenue dropped 15% compared to the previous month. Analyze the cause and propose improvements.โ€

โ€” Marketing Team Lead

Available Data

  • src_orders: Order data
  • src_order_items: Order item data
  • src_users: Customer data
  • src_events: Web event logs

๐Ÿ’ก Approach

Step 1: Clarify the Problem

  • โ€œDid the decline start on a specific date, or was it gradual?โ€
  • โ€œIs it more pronounced in specific channels/categories?โ€
  • โ€œWere there any competitor events or external factors?โ€

Step 2: Decompose

Revenue = Visitors ร— Conversion Rate ร— Average Order Value Check changes in each component compared to the previous month

โœ… Analysis Code

import pandas as pd import numpy as np DATA_PATH = '/data/' orders = pd.read_csv(DATA_PATH + 'src_orders.csv', parse_dates=['created_at']) order_items = pd.read_csv(DATA_PATH + 'src_order_items.csv') users = pd.read_csv(DATA_PATH + 'src_users.csv') # 1. Daily revenue trend daily_revenue = order_items.merge( orders[['order_id', 'created_at', 'status']], on='order_id' ).query("status == 'Complete'") daily_revenue['date'] = daily_revenue['created_at'].dt.date daily_summary = daily_revenue.groupby('date').agg( revenue=('sale_price', 'sum'), orders=('order_id', 'nunique'), aov=('sale_price', lambda x: x.sum() / x.count()) ).reset_index() print("=== Daily Revenue Trend ===") print(daily_summary.tail(60)) # 2. Channel breakdown (assuming: by traffic_source) df = order_items.merge(orders, on='order_id').merge(users, on='user_id') channel_comparison = df.groupby([ df['created_at'].dt.to_period('M'), 'traffic_source' ])['sale_price'].sum().unstack() print("\n=== Monthly Revenue by Channel ===") print(channel_comparison) # 3. Category breakdown df_products = df.merge( pd.read_csv(DATA_PATH + 'src_products.csv')[['product_id', 'category']], on='product_id' ) category_comparison = df_products.groupby([ df_products['created_at'].dt.to_period('M'), 'category' ])['sale_price'].sum().unstack() print("\n=== Monthly Revenue by Category ===") print(category_comparison) # 4. New vs Existing customers df['is_new'] = df.groupby('user_id')['created_at'].transform('min') == df['created_at'] customer_type = df.groupby([ df['created_at'].dt.to_period('M'), 'is_new' ])['sale_price'].sum().unstack() print("\n=== Revenue by New/Existing Customers ===") print(customer_type)

๐Ÿ“Š Sample Result Interpretation

Findings:

  1. Total visitors maintained, conversion rate dropped 25%
  2. Particularly significant drop in mobile channel (-35%)
  3. Apparel category decline contributed 80% of total drop

Hypotheses:

  • Mobile payment process issues?
  • Apparel inventory stockout?
  • Seasonal transition (winterโ†’spring collection)?

Recommended Actions:

  1. Mobile funnel analysis (cartโ†’checkout drop-off point)
  2. Check apparel inventory status
  3. Add year-over-year comparison analysis

๐Ÿ”’ Premium Cases (9 Questions)

All 10 Case Studies

CaseDifficultyTopic
Case 1IntermediateRevenue Decline Analysis (Sample)
Case 2AdvancedA/B Test Result Interpretation
Case 3AdvancedCustomer Churn Prediction Model
Case 4AdvancedPrice Optimization
Case 5AdvancedMarketing Budget Allocation
Case 6IntermediatePromotion Effect Analysis
Case 7AdvancedCohort Retention Analysis
Case 8IntermediateInventory Optimization
Case 9AdvancedLTV Prediction
Case 10AdvancedFunnel Analysis and Optimization

What Youโ€™ll Learn in Premium

  • โœ… A/B Test Interpretation: Analyzing statistical significance + business impact together
  • โœ… Churn Prediction Model: From feature engineering to model deployment
  • โœ… Price Elasticity Analysis: Methods to derive optimal pricing
  • โœ… Budget Allocation Optimization: Decision-making based on ROAS, CAC
  • โœ… Interviewer Scoring Points: Actual evaluation criteria in interviews

๐ŸŽฏ Purchase All 10 Cases + Explanations

SQL + Pandas + Statistics + Case Study bundle discount


๐Ÿ“ Case Interview Tips

๐ŸŽฏ What Interviewers Look For

  1. Structured Thinking

    • Break down problems in a MECE manner
    • Flow of hypothesis โ†’ validation โ†’ conclusion
  2. Business Acumen

    • Connect numbers to business impact
    • Can answer the โ€œSo what?โ€ question
  3. Communication

    • Explain complex analysis simply
    • Acknowledge uncertainty and limitations
  4. Feasibility

    • Not just theory but implementation methods
    • Prioritization considering resources/time

๐Ÿšซ Mistakes to Avoid

  • โŒ Starting analysis without asking questions
  • โŒ Listing only numbers without insights
  • โŒ Drawing conclusions without assumptions
  • โŒ Not preparing for counterarguments

๐Ÿ“ Practice More for Free

If you need more case study preparation, complete the other interview sections first:

Last updated on

๐Ÿค–AI ๋ชจ์˜๋ฉด์ ‘์‹ค์ „์ฒ˜๋Ÿผ ์—ฐ์Šตํ•˜๊ธฐ